Novel approaches to overcome antibiotic resistance: Phage therapy, nanoparticles, and natural antimicrobials
Approaches to overcome antibiotic resistance
DOI:
https://doi.org/10.62310/liab.v5i2.225Keywords:
Antibiotic resistance, Phage therapy, Nanoparticles, Natural antimicrobials, Multidrug resistant bacteriaAbstract
The escalating crisis of antibiotic resistance worldwide poses considerable dangers to public health, emphasizing the ineffectiveness of traditional antibiotics against multidrug-resistant bacterial strains. Consequently, scientists are working on new strategies that serve as substitutes or complementary techniques to conventional antibacterial therapeutics. Three potential approaches include: phage therapy, nanoparticles, and natural antimicrobials. Phage therapy uses bacteriophages, viruses that particularly target and destroy bacteria, to offer an extremely exclusive, versatile, and self-replicating treatment alternative. Both polymeric and metal-based nanoparticles demonstrate promising antibacterial activities through different mechanisms, including cell membrane degradation, oxidative stress generation, biofilm synthesis inhibition, and improved drug delivery by working synergistically with other antibiotics. Nanoparticles can also be manipulated to enhance selectivity and decrease toxic effects. Plant, algae, and animal- derived natural antimicrobials comprise a wide variety of structurally distinct compounds offering antimicrobial activities against a broad spectrum of bacteria, including interfering with the mechanisms of resistance development. Progress in genomics, biotechnology, and nanoscience is opening new pathways of innovation, improvement, and administration of these new substances. This review highlights the modes of action, recent clinical studies, and possible therapeutic applications of these alternative strategies, underlining their role in overcoming the problems of antibiotic resistance.
Metrics
References
Abd El-Hack ME, Abdelnour SA, Kamal M, Khafaga AF, Shakoori AM, Bagadood RM, Świątkiewicz S. (2023). Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomedicine & Pharmacotherapy 164: 114967. https://doi.org/10.1016/j.biopha.2023.114967
Abdallah EM, Alhatlani BY, de Paula Menezes R, Martins CHG. (2023). Back to nature: Medicinal plants as promising sources for antibacterial drugs in the post-antibiotic era. Plants 12(17): 3077. https://doi.org/10.3390/plants12173077
Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, Mohamed MG. (2024). Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health 2: 100081. https://doi.org/10.1016/j.glmedi.2024.100081
Akhreim AA, Gaballa MF, Sulaiman G, Attitalla IH. (2024). Biofertilizers production and climate changes on environmental prospective applications for some nanoparticles produced from some microbial isolates. International Journal of Agriculture and Biosciences 13(2): 196- 203. https://doi.org/10.47278/journal.ijab/2024.094
Ali AY, Alani AAK, Ahmed BO, Hamid LL. (2024). Effect of biosynthesized silver nanoparticle size on antibacterial and anti-biofilm activity against pathogenic multi-drug resistant bacteria. OpenNano 20: 100213. https://doi.org/10.1016/j.onano.2024.100213
Al-Sa'ady AT, Hussein FH. (2020). Nanomedical Applications of Titanium Dioxide Nanoparticles as Antibacterial Agent against Multi-Drug Resistant Streptococcus Pneumoniae. Systematic Reviews in Pharmacy 11(10): 53-63. https://doi.org/10.31838/srp.2020.10.11
Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Micol V. (2020). Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review. Current Medicinal Chemistry 27(15): 2576-2606. https://doi.org/10.2174/0929867325666181008115650
Amábile-Cuevas CF, Lund-Zaina S. (2024). Non-canonical aspects of antibiotics and antibiotic resistance. Antibiotics 13(6): 565. https://doi.org/10.3390/antibiotics13060565
Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Simal-Gandara J. (2022). Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Science of The Total Environment 821: 153472. https://doi.org/10.1016/j.scitotenv.2022.153472
Baciu AP, Baciu C, Baciu G, Gurau G. (2024). The burden of antibiotic resistance of the main microorganisms causing infections in humans–review of the literature. Journal of Medicine and Life 17(3): 246. https://doi.org/10.25122/jml-2023-0404
Baek S, Joo SH, Su C, Toborek M. (2019). Antibacterial effects of graphene-and carbon-nanotube-based nanohybrids on Escherichia coli: Implications for treating multidrug-resistant bacteria. Journal of Environmental Management 247: 214-223. https://doi.org/10.1016/j.jenvman.2019.06.077
Bagheri E, Shori AB, Peng CW, Baba AS, Alzahrani AJ. (2024). Phytochemical analysis and medicinal properties of some selected traditional medicinal plants. International Journal of Agriculture and Biosciences 13(4): 689-700. https://doi.org/10.47278/journal.ijab/2024.177
Baran A, Kwiatkowska A, Potocki L. (2023). Antibiotics and bacterial resistance—a short story of an endless arms race. International Journal of Molecular Sciences 24(6): 5777. https://doi.org/10.3390/ijms24065777
Barksdale SM, Hrifko EJ, van Hoek ML. (2017). Cathelicidin antimicrobial peptide from Alligator mississippiensis has antibacterial activity against multi-drug resistant Acinetobacter baumanii and Klebsiella pneumoniae. Developmental & Comparative Immunology 70: 135-144. https://doi.org/10.1016/j.dci.2017.01.011
Bekele T, Alamnie G. (2022). Treatment of antibiotic-resistant bacteria by nanoparticles: current approaches and prospects. Annals of Advances in Chemistry 6(1): 001-009. https://doi.org/10.29328/journal.aac.1001025
Bessembayeva L, Kirkimbayeva Z, Biyashev B, Zholdasbekova A, Kuzembekova G, Sarybayeva D, Zhylkaidar A, Oryntaev K, Bakiyeva F. (2024). Investigation of the antibiotic resistance and biofilm-forming ability of staphylococcus species from bovine mastitis cases in the Almaty region, Kazakhstan. International Journal of Veterinary Science 13(6): 853-861. https://doi.org/10.47278/journal.ijvs/2024.172
Birk SE, Boisen A, Nielsen LH. (2021). Polymeric nano-and microparticulate drug delivery systems for treatment of biofilms. Advanced Drug Delivery Reviews 174: 30-52. https://doi.org/10.1016/j.addr.2021.04.005
Biswal A, Purohit SS, Swain SK. (2023). Chitosan based composite scaffolds in skin wound repair: A review. Journal of Drug Delivery Science and Technology 84: 104549. https://doi.org/10.1016/j.jddst.2023.104549
Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, Kianfar E. (2021). Nanomaterial by sol‐gel method: synthesis and application. Advances in Materials Science and Engineering 2021(1): 5102014. https://doi.org/10.1155/2021/5102014
Bolatchiev A. (2022). Antimicrobial peptides epinecidin-1 and beta-Defesin-3 are effective against a broad spectrum of antibiotic-resistant bacterial isolates and increase survival rate in experimental sepsis. Antibiotics 11(1): 76. https://doi.org/10.3390/antibiotics11010076
Briot T, Kolenda C, Ferry T, Medina M, Laurent F, Leboucher G, PHAGEinLYON Study Group. (2022). Paving the way for phage therapy using novel drug delivery approaches. Journal of Controlled Release 347: 414-424. https://doi.org/10.1016/j.jconrel.2022.05.021
Chaieb K, Kouidhi B, Hosawi SB, Baothman OA, Zamzami MA, Altayeb HN. (2022). Computational screening of natural compounds as putative quorum sensing inhibitors targeting drug resistance bacteria: Molecular docking and molecular dynamics simulations. Computers in Biology and Medicine 145: 105517. https://doi.org/10.1016/j.compbiomed.2022.105517
Chavan C, Kamble S, Murthy AVR, Kale SN. (2020). Ampicillin-mediated functionalized gold nanoparticles against ampicillin-resistant bacteria: strategy, preparation and interaction studies. Nanotechnology 31(21): 215604. https://doi.org/10.1088/1361-6528/ab72b4
Cheesman MJ, Ilanko A, Blonk B, Cock IE. (2017). Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution?. Pharmacognosy reviews 11(22): 57. https://doi.org/10.4103/phrev.phrev_21_17
Cheruvari A, Kammara R. (2024). Bacteriocins future perspectives: Substitutes to antibiotics. Food Control: 110834. https://doi.org/10.1016/j.foodcont.2024.110834
Coates AR, Hu Y, Holt J, Yeh P. (2020). Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert Review of Anti-infective Therapy 18(1): 5-15. https://doi.org/10.1080/14787210.2020.1705155
Dakal TC, Kumar A, Majumdar RS, Yadav V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology 7: 1831. https://doi.org/10.3389/fmicb.2016.01831
de Borba Gurpilhares D, Cinelli LP, Simas NK, Pessoa Jr A, Sette LD. (2019). Marine prebiotics: Polysaccharides and oligosaccharides obtained by using microbial enzymes. Food Chemistry 280: 175-186. https://doi.org/10.1016/j.foodchem.2018.12.023
Denardi LB, de Arruda Trindade P, Weiblen C, Ianiski LB, Stibbe PC, Pinto SC, Santurio JM. (2022). In vitro activity of the antimicrobial peptides h-Lf1-11, MSI-78, LL-37, fengycin 2B, and magainin-2 against clinically important bacteria. Brazilian Journal of Microbiology: 1-7. https://doi.org/10.1007/s42770-021-00645-6
Dennehy JJ, Abedon ST. (2021). Phage infection and lysis. In Bacteriophages: Biology, Technology, Therapy (pp. 341-383). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-41986-2_53
Deshmukh RK, Gaikwad KK. (2024). Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Conversion and Biorefinery 14(4): 4419-4440. https://doi.org/10.1007/s13399-022-02623-w
Díaz-Puertas R, Álvarez-Martínez FJ, Falco A, Barrajón-Catalán E, Mallavia R. (2023). Phytochemical-based nanomaterials against antibiotic-resistant bacteria: an updated review. Polymers 15(6): 1392. https://doi.org/10.3390/polym15061392
Dong S, Chen H, Zhou Q, Liao N. (2021). Protein degradation control and regulation of bacterial survival and pathogenicity: The role of protein degradation systems in bacteria. Molecular Biology Reports: 1-11. https://doi.org/10.1007/s11033-021-06744-9
Dorgham SM, Arafa AA, Ibrahim ES, Abdalhamed AM. (2024). Carbapenem-resistant Acinetobacter baumannii in raw milk from Egyptian dairy farm animals with subclinical mastitis. International Journal of Veterinary Science 13(6): 813-818. https://doi.org/10.47278/journal.ijvs/2024.167
Dussault D, Vu KD, Vansach T, Horgen FD, Lacroix M. (2016). Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chemistry 199: 114-118. https://doi.org/10.1016/j.foodchem.2015.11.119
Eid MM. (2022). Characterization of Nanoparticles by FTIR and FTIR-Microscopy. In Handbook of Consumer Nanoproducts. Singapore: Springer Singapore. Pp. 1-30). https://doi.org/10.1007/978-981-15-6453-6_89-1
Elbasuney S, Yehia M, Ismael S, Al-Hazmi NE, El-Sayyad GS, Tantawy H. (2023). Potential impact of reduced graphene oxide incorporated metal oxide nanocomposites as antimicrobial, and antibiofilm agents against pathogenic microbes: Bacterial protein leakage reaction mechanism. Journal of Cluster Science 34(2): 823-840. https://doi.org/10.1007/s10876-022-02255-0
El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KM, Barqawi AA, Mansour AT. (2022). Phytochemical and potential properties of seaweeds and their recent applications: A review. Marine Drugs 20(6): 342. https://doi.org/10.3390/md20060342
El-Kaliuoby MI, Morsy A, Abdel-Salam AH, Morsy A, El Khatib AM, Khalil AM. (2025). Novelty of harnessing electromagnetic fields to boost graphene oxide nano particles antibacterial potency. Scientific Reports 15(1): 9524. https://doi.org/10.1038/s41598-025-91408-y
Elshobary ME, Badawy NK, Ashraf Y, Zatioun AA, Masriya HH, Ammar MM, Assy AM. (2025). Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review. Pharmaceuticals 18(3): 402. https://doi.org/10.3390/ph18030402
Filippov SK, Khusnutdinov R, Murmiliuk A, Inam W, Zakharova LY, Zhang H, Khutoryanskiy VV. (2023). Dynamic light scattering and transmission electron microscopy in drug delivery: A roadmap for correct characterization of nanoparticles and interpretation of results. Materials Horizons 10(12): 5354-5370. https://doi.org/10.1039/D3MH00717K
Founou LL, Founou RC, Essack SY. (2021). Antimicrobial resistance in the farm-to-plate continuum: more than a food safety issue. Future Science OA 7(5): FSO692. https://doi.org/10.2144/fsoa-2020-0189
Gadisa E, Weldearegay G, Desta K, Tsegaye G, Hailu S, Jote K, Takele A. (2019). Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complementary and Alternative Medicine 19: 1-9. https://doi.org/10.1186/s12906-019-2429-4
Gangwar B, Kumar S, Darokar MP. (2020). Glabridin averts biofilms formation in methicillin-resistant Staphylococcus aureus by modulation of the surfaceome. Frontiers in Microbiology 11: 1779. https://doi.org/10.3389/fmicb.2020.01779
Gerace E, Mancuso G, Midiri A, Poidomani S, Zummo S, Biondo C. (2022). Recent advances in the use of molecular methods for the diagnosis of bacterial infections. Pathogens 11(6): 663. https://doi.org/10.3390/pathogens11060663
Gómez-Guzmán M, Rodríguez-Nogales A, Algieri F, Gálvez J. (2018). Potential role of seaweed polyphenols in cardiovascular-associated disorders. Marine Drugs 16(8): 250. https://doi.org/10.3390/md16080250
Gonçalves AS, Leitão MM, Simões M, Borges A. (2023). The action of phytochemicals in biofilm control. Natural Product Reports 40(3): 595-627. https://doi.org/10.1039/D2NP00053A
Gordillo Altamirano FL, Barr JJ. (2019). Phage therapy in the postantibiotic era. Clinical Microbiology Reviews 32(2): 10-1128. https://doi.org/10.1128/cmr.00066-18
Gulumbe BH, Abdulrahim A, Ibrahim MN. (2025). Rising antibiotic costs as a potential driver of antimicrobial resistance in Nigeria. Discover Public Health 22(1): 1-7. https://doi.org/10.1016/j.glmedi.2024.100081
Guo J, Wang B, Qiu X, Ren S, Wang Y. (2023). Improvement of chlorination and sterilization of pathogenic bacteria by natural products. Journal of Hazardous Materials Advances 10: 100318. https://doi.org/10.1016/j.hazadv.2023.100318
Gupta S, Abhishek Shrivastava S, Singh RJ, Gogoi P, Kumar B. (2021). Evaluation of antibacterial activity of Magainin and Mastoparan and its novel hybrid against MDR E. coli isolates of neonatal calves. International Journal of Peptide Research and Therapeutics 27: 1111-1119. https://doi.org/10.1007/s10989-020-10154-z
Häffner SM, Malmsten M. (2017). Membrane interactions and antimicrobial effects of inorganic nanoparticles. Advances in Colloid and Interface Science 248: 105-128. https://doi.org/10.1016/j.cis.2017.07.029
Hannan MA, Sohag AAM, Dash R, Haque MN, Mohibbullah M, Oktaviani DF, Moon IS. (2020). Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine 69:153201. https://doi.org/10.1016/j.phymed.2020.153201
Hasan M, Ahn J. (2022). Evolutionary dynamics between phages and bacteria as a possible approach for designing effective phage therapies against antibiotic-resistant bacteria. Antibiotics 11(7): 915. https://doi.org/10.3390/antibiotics11070915
Hatfull GF, Dedrick RM, Schooley RT. (2022). Phage therapy for antibiotic-resistant bacterial infections. Annual Review of Medicine 73(1): 197-211. https://doi.org/10.1146/annurev-med-080219-122208
Hendiani S, Carbajo C, Caicedo PNA, Verma T, Hansen MF, Agbaje OBA, Sand KK. (2025). Reconciling the role of mineral surfaces for bacterial evolution: Importance of minerals in the dissemination of antibiotic resistance. Science of The Total Environment 962: 178301. https://doi.org/10.1016/j.scitotenv.2024.178301
Higgins Hoare A, Tan SP, McLoughlin P, Mulhare P, Hughes H. (2019). The screening and evaluation of Fucus serratus and Fucus vesiculosus extracts against current strains of MRSA isolated from a clinical hospital setting. Scientific Reports 9(1): 17911. https://doi.org/10.1038/s41598-019-54326-4
Hilal B, Khan MM, Fariduddin Q. (2024). Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. Plant Physiology and Biochemistry 211: 108674. https://doi.org/10.1016/j.plaphy.2024.108674
Huang L, Ahmed S, Gu Y, Huang J, An B, Wu C, Cheng G. (2021). The effects of natural products and environmental conditions on antimicrobial resistance. Molecules 26(14): 4277. https://doi.org/10.3390/molecules26144277
Iqbal R, Irfan M, Bibi A, Batool E, Ahmad R, Ammat-u-Salam, Afzal M. (2024a). Impacts of ZnO nanoparticles on brain and spleen in male albino rats, A comprehensive exploration of diverse exposure routes. Continental Veterinary Journal 4(1):92-100. http://dx.doi.org/10.71081/cvj/2024.012
Iqbal T, Altaf S, Salma U, Fatima M, Khan MN, Farooq S, Abrar M, Tasleem M, Afzal A. (2024b). Cell membrane coated polymeric nanocarriers: a novel drug delivery approach for the targeted therapy of rheumatoid arthritis. Agrobiological Records 15: 91-102. https://doi.org/10.47278/journal.abr/2024.003
Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, Gabard J. (2019). Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. The Lancet Infectious Diseases 19(1): 35-45. https://doi.org/10.1016/S1473-3099(18)30482-1
João J, Lampreia J, Prazeres DMF, Azevedo AM. (2021). Manufacturing of bacteriophages for therapeutic applications. Biotechnology Advances 49: 107758. https://doi.org/10.1016/j.biotechadv.2021.107758
Joudeh N, Linke D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology 20(1): 262. https://doi.org/10.1186/s12951-022-01477-8
Kaabi SA, Musafer HK, Hashim ST, Raheem ZK. (2020). Novel phage cocktail for the treatment of bacteria causing chronic suppurative otitis media. Tropical Journal of Natural Product Research (TJNPR) 4(10): 680-686. https://doi.org/10.26538/tjnpr/v4i10.4
Kamble E, Sanghvi P, Pardesi K. (2022). Synergistic effect of antibiotic combinations on Staphylococcus aureus biofilms and their persister cell populations. Biofilm 4: 100068. https://doi.org/10.1016/j.bioflm.2022.100068
Khalil MA, El Maghraby GM, Sonbol FI, Allam NG, Ateya PS, Ali SS. (2021). Enhanced efficacy of some antibiotics in presence of silver nanoparticles against multidrug resistant Pseudomonas aeruginosa recovered from burn wound infections. Frontiers in Microbiology 12: 648560. https://doi.org/10.3389/fmicb.2021.648560
Khan S, Hossain MK. (2022). Classification and properties of nanoparticles. In Nanoparticle-Based Polymer Composites (pp. 15-54). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824272-8.00009-9
Kortright KE, Chan BK, Koff JL, Turner PE. (2019). Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host & Microbe 25(2): 219-232. https://doi.org/10.1016/j.chom.2019.01.014
Krishnamoorthy R, Athinarayanan J, Periyasamy VS, Alshuniaber MA, Alshammari G, Hakeem MJ, Alshatwi AA. (2022). Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to beta-lactam antibiotics. Molecules 27(8): 2489. https://doi.org/10.3390/molecules27082489
Kulshreshtha G, Critchley A, Rathgeber B, Stratton G, Banskota AH, Hafting J, Prithiviraj B. (2020). Antimicrobial effects of selected, cultivated red seaweeds and their components in combination with tetracycline, against poultry pathogen Salmonella enteritidis. Journal of Marine Science and Engineering 8(7): 511. https://doi.org/10.3390/jmse8070511
Lange A, Grzenia A, Wierzbicki M, Strojny-Cieslak B, Kalińska A, Gołębiewski M, Jaworski S. (2021). Silver and copper nanoparticles inhibit biofilm formation by mastitis pathogens. Animals 11(7): 1884.https://doi.org/10.3390/ani11071884
Lauritano C, Ianora A. (2018). Grand challenges in marine biotechnology: overview of recent EU-funded projects. Grand Challenges in Marine Biotechnology: 425-449. https://doi.org/10.1007/978-3-319-69075-9_11
Law N, Logan C, Yung G, Furr CLL, Lehman SM, Morales S, Aslam S. (2019). Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 47: 665-668. https://doi.org/10.1007/s15010-019-01319-0
Leitner L, Ujmajuridze A, Chanishvili N, Goderdzishvili M, Chkonia I, Rigvava S, Kessler TM. (2021). Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. The Lancet Infectious Diseases 21(3): 427-436. https://doi.org/10.1016/S1473-3099(20)30330-3
Lenchenko E, Sachivkina N, Karamyan A, Volobueva O, Neborak E, Avdonina M, Nechet O, Molchanova M. (2024). Characteristics of biofilms formed by pathogenic Enterobacterales isolated from infected gastrointestinal tracts of rabbits. International Journal of Veterinary Science 13(6): 870-877. https://doi.org/10.47278/journal.ijvs/2024.183
León-Buitimea A, Garza-Cárdenas CR, Román-García MF, Ramírez-Díaz CA, Ulloa-Ramírez M, Morones-Ramírez JR. (2022). Nanomaterials-based combinatorial therapy as a strategy to combat antibiotic resistance. Antibiotics 11(6): 794. https://doi.org/10.3390/antibiotics11060794
Li B, Mao J, Wu J, Mao K, Jia Y, Chen F, Liu J. (2024). Nano–bio interactions: biofilm‐targeted antibacterial nanomaterials. Small 20(7): 2306135. https://doi.org/10.1002/smll.202306135
Łobocka M, Dąbrowska K, Górski A. (2021). Engineered bacteriophage therapeutics: rationale, challenges and future. BioDrugs 35(3): 255-280. https://doi.org/10.1007/s40259-021-00480-z
Malik S, Nehra K, Rana JS. (2021). Bacteriophage cocktail and phage antibiotic synergism as promising alternatives to conventional antibiotics for the control of multi-drug-resistant uropathogenic Escherichia coli. Virus Research 302: 198496. https://doi.org/10.1016/j.virusres.2021.198496
Mammari N, Lamouroux E, Boudier A, Duval RE. (2022). Current knowledge on the oxidative-stress-mediated antimicrobial properties of metal-based nanoparticles. Microorganisms 10(2): 437. https://doi.org/10.3390/microorganisms10020437
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules 23(4): 795. https://doi.org/10.3390/molecules23040795
Mehrotra R, Cukor D, McCurry SM, Rue T, Roumelioti ME, Heagerty PJ, Unruh M. (2024). Effectiveness of existing insomnia therapies for patients undergoing hemodialysis: a randomized clinical trial. Annals of Internal Medicine 177(2): 177-188. https://doi.org/10.7326/M23-1794
Mehwish, Azam SE, Muzamail S. (2024). Unveiling the future: nanotechnology's role in advanced food packaging. Agrobiological Records 15: 24-33. https://doi.org/10.47278/journal.abr/2023.045
Mishra B, Felix L, Basu A, Kollala SS, Chhonker YS, Ganesan N, Mylonakis E. (2022). Design and evaluation of short bovine lactoferrin-derived antimicrobial peptides against multidrug-resistant Enterococcus faecium. Antibiotics 11(8): 1085. https://doi.org/10.3390/antibiotics11081085
Mohammed BQ, Abdullah AH, Rayshan AR. (2024). Pseudomonas that causes otitis in dogs: An increasing opposition. International Journal of Agriculture and Biosciences 13(1): 59-64. https://doi.org/10.47278/journal.ijab/2024.087
Mongkolsuttirat K, Buajarern J. (2021). Uncertainty evaluation of crystallite size measurements of nanoparticle using X-Ray Diffraction analysis (XRD). In Journal of Physics: Conference Series (Vol. 1719, No. 1, p. 012054). IOP Publishing. https://doi.org/10.1088/1742-6596/1719/1/012054
Muteeb G, Rehman MT, Shahwan M, Aatif M. (2023). Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. Pharmaceuticals 16(11): 1615. https://doi.org/10.3390/ph16111615
Nazli A, He DL, Liao D, Khan MZI, Huang C, HeY. (2022). Strategies and progresses for enhancing targeted antibiotic delivery. Advanced drug delivery reviews 189: 114502. https://doi.org/10.1016/j.addr.2022.114502
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. (2022). From plants to antimicrobials: Natural products against bacterial membranes. Phytotherapy Research 36(1): 33-52. https://doi.org/10.1002/ptr.7275
Onallah H, Hazan R, Nir-Paz R. (2023). Compassionate use of bacteriophages for failed persistent infections during the first 5 years of the Israeli phage therapy center. In Open Forum Infectious Diseases (Vol. 10, No. 5, p. ofad221). US: Oxford University Press. https://doi.org/10.1093/ofid/ofad221
Ooi ML, Drilling AJ, Morales S, Fong S, Moraitis S, Macias-Valle L, Wormald PJ. (2019). Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngology–Head & Neck Surgery 145(8): 723-729. https://doi.org/10.1001/jamaoto.2019.1191
Ouyang R, Ongenae V, Muok A, Claessen D, Briegel A. (2024). Phage fibers and spikes: a nanoscale Swiss army knife for host infection. Current Opinion in Microbiology 77: 102429. https://doi.org/10.1016/j.mib.2024.102429
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Kumar M. (2024). Phage therapy: an alternative treatment modality for MDR bacterial infections. Infectious Diseases 56(10): 785-817. https://doi.org/10.1080/23744235.2024.2379492
Patil N, Bhaskar R, Vyavhare V, Dhadge R, Khaire V, Patil Y. (2021). Overview on methods of synthesis of nanoparticles. International Journal of Current Pharmaceutical Research 13(2): 11-16. https://dx.doi.org/10.22159/ijcpr.2021v13i2.41556
Pfeifer E, Sousa JM, Touchon M, Rocha EP. (2022). When bacteria are phage playgrounds: interactions between viruses, cells, and mobile genetic elements. Current Opinion in Microbiology 70: 102230. https://doi.org/10.1016/j.mib.2022.102230
Pina-Pérez MC, Rivas A, Martínez A, Rodrigo D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food chemistry 235: 34-44. https://doi.org/10.1016/j.foodchem.2017.05.033
Qadri H, Shah AH, Ahmad SM, Alshehri B, Almilaibary A, Mir MA. (2022). Natural products and their semi-synthetic derivatives against antimicrobial-resistant human pathogenic bacteria and fungi. Saudi Journal of Biological Sciences 29(9): 103376. https://doi.org/10.1016/j.sjbs.2022.103376
Ranveer SA, Dasriya V, Ahmad MF, Dhillon HS, Samtiya M, Shama E, ………., Puniya AK. (2024). Positive and negative aspects of bacteriophages and their immense role in the food chain. npj Science of Food 8(1): 1. https://doi.org/10.1038/s41538-023-00245-8
Rashid S, F Hafeez, R Ashraf, A Shoukat, A Nawaz, K Hassan. (2024). Phytomedicine efficacy and prospects in poultry; a new insight to old anthelmintic resistance. Continental Veterinary Journal 4(1): 62-75.
Saddiq AA, Al-Ghamdi H. (2018). Aloe vera extract: A novel antimicrobial and antibiofilm against methicillin resistant Staphylococcus aureus strains. Pakistan Journal of Pharmaceutical Sciences 31(5): 2123-2130
Sadeghi S, Agharazi F, Hosseinzadeh SA, Mashayekhi M, Saffari Z, Shafiei M, Sadeghi M. (2024). Gold nanoparticle conjugation enhances berberine's antibacterial activity against methicillin-resistant
Staphylococcus aureus (MRSA). Talanta 268: 125358. https://doi.org/10.1016/j.talanta.2023.125358
Sanz-Gaitero M, Seoane-Blanco M, van Raaij MJ. (2021). Structure and function of bacteriophages. Bacteriophages: Biology, Technology, Therapy: 19-91. https://doi.org/10.1007/978-3-319-41986-2_1
Saxena P, Joshi Y, Rawat K, Bisht R. (2019). Biofilms: architecture, resistance, quorum sensing and control mechanisms. Indian Journal of Microbiology 59: 3-12. https://doi.org/10.1007/s12088-018-0757-6
Shaban A, Zakaria Z, Abdelhamid IA, Elhakim HK, El-Sayed ESR. (2025). Novel myco-fabrication of copper and nickel nanoparticles and evaluation of their effects against antibiotic resistance genes in different bacterial strains and anticancer potentials. Process Biochemistry 149: 192-203. https://doi.org/10.1016/j.procbio.2024.12.008
Shamim A, Ali A, Iqbal Z, Mirza MA, Aqil M, Kawish SM, Saheer Kuruniyan M. (2023). Natural medicine a promising candidate in combating microbial biofilm. Antibiotics 12(2): 299. https://doi.org/10.3390/antibiotics12020299
Sharifi-Rad J, Quispe C, Durazzo A, Lucarini M, Souto EB, Santini A, Cruz-Martins N. (2022). Resveratrol’biotechnological applications: enlightening its antimicrobial and antioxidant properties. Journal of Herbal Medicine 32: 100550. https://doi.org/10.1016/j.hermed.2022.100550
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. (2023). Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 11(6): 1614. https://doi.org/10.3390/microorganisms11061614
Shim H. (2023). Three innovations of next-generation antibiotics: evolvability, specificity, and non-immunogenicity. Antibiotics 12(2): 204. https://doi.org/10.3390/antibiotics12020204
Shukla V, Niveria K, Shashidhar P, Verma AK. (2023). Dynamic light scattering (DLS) particle size analysis for biomedical nanotechnology. In Analytical Techniques for Biomedical Nanotechnology. Bristol, UK: IOP Publishing. Pp. 16-1.
Silva AM, Félix LM, Teixeira I, Martins-Gomes C, Schäfer J, Souto EB, Nunes FM. (2021). Orange thyme: phytochemical profiling, in vitro bioactivities of extracts and potential health benefits. Food Chemistry: X 12: 100171. https://doi.org/10.1016/j.fochx.2021.100171
Singh A, Amod A, Pandey P, Bose P, Pingali MS, Shivalkar S, Samanta SK. (2022). Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomedical Materials 17(2): 022003. https://doi.org/10.1088/1748-605X/ac50f6
Siwal SS, Sheoran K, Mishra K, Kaur H, Saini AK, Saini V, Thakur VK. (2022). Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future Perspectives. Chemosphere 293: 133542. https://doi.org/10.1016/j.chemosphere.2022.133542
Soliman FM, Fathy MM, Salama MM, Saber FR. (2016). Comparative study of the volatile oil content and antimicrobial activity of Psidium guajava L. and Psidium cattleianum Sabine leaves. Bulletin of Faculty of Pharmacy, Cairo University 54(2): 219-225. https://doi.org/10.1016/j.bfopcu.2016.06.003
Song C, Yang J, Zhang M, Ding G, Jia C, Qin J, Guo L. (2021). Marine natural products: the important resource of biological insecticide. Chemistry & Biodiversity 18(5): e2001020. https://doi.org/10.1002/cbdv.202001020
Srikong W, Bovornreungroj N, Mittraparparthorn P, Bovornreungroj P. (2017). Antibacterial and antioxidant activities of differential solvent extractions from the green seaweed Ulva intestinalis. ScienceAsia 43(2): 88-95. https://doi.org/10.2306/scienceasia1513-1874.2017.43.088
Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, Masjedian Jazi F. (2020). How phages overcome the challenges of drug resistant bacteria in clinical infections. Infection and Drug Resistance 13: 45-61. https://doi.org/10.2147/IDR.S234353
Tabassum A, Javed MA, Shahzad S, Chaudhry MH, Tariq A, Aziz S, Farooqi SH, Ayub MM, Nisa Q, Nisa UH, Akhtar T, Ameer T. (2024). Tuberculosis; nanotechnology-revolutionized Prevention & treatment strategies. Continental Veterinary Journal 4(2): 132-145 http://dx.doi.org/10.71081/cvj/2024.024
Taha OA, Connerton PL, Connerton IF, El-Shibiny A. (2018). Bacteriophage ZCKP1: a potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Frontiers in Microbiology 9: 2127. https://doi.org/10.3389/fmicb.2018.02127
Tahir F, Fatima F, Fatima R, Ali E. (2024). Fruit peel extracted polyphenols through ultrasonic assisted extraction: A review. Agrobiological Records 15: 1-12. https://doi.org/10.47278/journal.abr/2023.043
Takó M, Kerekes EB, Zambrano C, Kotogán A, Papp T, Krisch J, Vágvölgyi C. (2020). Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants 9(2): 165. https://doi.org/10.3390/antiox9020165
Talebi Bezmin Abadi A, Rizvanov AA, Haertlé T, Blatt NL. (2019). World Health Organization report: current crisis of antibiotic resistance. BioNanoScience 9(4): 778-788. https://doi.org/10.1007/s12668-019-00658-4
Tamma PD, Souli M, Billard M, Campbell J, Conrad D, Ellison DW, Antibacterial Resistance Leadership Group. (2022). Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial. Trials 23(1): 1057. https://doi.org/10.1186/s13063-022-07047-5
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, Koirala N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health 14(12): 1750-1766. https://doi.org/10.1016/j.jiph.2021.10.020
Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. (2020). Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 10(1): 3. https://doi.org/10.3390/antibiotics10010003
Wang M, Zhang J, Wei J, Jiang L, Jiang L, Sun Y, Wang Z. (2024). Phage-inspired strategies to combat antibacterial resistance. Critical Reviews in Microbiology 50(2): 196-211. https://doi.org/10.1080/1040841X.2023.2181056
Wittebole X, Opal S. (2020). Phagetherapy: Clinical applications–critical appraisal of randomized controlled trials. Biocommunication of Phages: 371-383. https://doi.org/10.1007/978-3-030-45885-0_18
Xiang H, Cao F, Ming D, Zheng Y, Dong X, Zhong X, Wang D. (2017). Aloe-emodin inhibits Staphylococcus aureus biofilms and extracellular protein production at the initial adhesion stage of biofilm development. Applied Microbiology and Biotechnology 101: 6671-6681. https://doi.org/10.1007/s00253-017-8403-5
Zalewska-Piątek B, Piątek R. (2020). Phage therapy as a novel strategy in the treatment of urinary tract infections caused by E. coli. Antibiotics 9(6): 304. https://doi.org/10.3390/antibiotics9060304
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. (2022). Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug‐resistant infections. Medicinal Research Reviews 42(4): 1377-1422. https://doi.org/10.1002/med.21879
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ayesha kousar, Zainab Jabbar , Zaib Un Nisa , Tehreem Shehzad, Faiqa Irshad, Sara Mahmood, Gull Naz , Aqsa Malik

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-06-26
Published 2025-07-06